How Fast (MCQ)

1. A graph is plotted of $\ln (k)$ against $1 / T$.
($k=$ rate constant, $T=$ temperature in K)
The gradient has the numerical value of -55000 .
What is the activation energy, in $\mathrm{kJ} \mathrm{mol}^{-1}$?

A $\quad+1.5 \times 10^{-7}$
B $+2.22 \times 10^{-6}$
C +6.62
D +457

Your answer
2. The equation for the reaction of $\mathrm{IC} /$ and H_{2} is shown below.
$2 \mathrm{ICl}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})+\mathrm{I}_{2}(\mathrm{~g})$
The rate constant k for this reaction is $1.63 \times 10^{-6} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$.
What is the overall order of the reaction?

A 0
B 1
C 2
D 3

Your answer
3. A graph of In k against $\frac{7}{7}(T$ in K$)$ for a reaction has a gradient with the numerical value of -4420.

What is the activation energy, in $\mathrm{kJ} \mathrm{mol}^{-1}$, for this reaction?

A -532
B -36.7
C +36.7
D $\quad+5.32 \times 10^{5}$

Your answer
4. A reaction is first order with respect to a reactant \mathbf{X}. Which rate-concentration graph for reactant \mathbf{X} is the correct shape?
A

B

C

D

Your answer \square
5. A reaction is zero order with respect to a reactant \mathbf{A}.

Which concentration-time graph for reactant \mathbf{A} is the correct shape?

A

B

C

D

\square
6. The reaction below is first order with respect to \mathbf{A}.
$\mathrm{A}(\mathrm{aq}) \rightarrow$ products
When the initial concentration of \mathbf{A} is $1 \mathrm{~mol} \mathrm{dm}^{-3}$, the half-life is 20 minutes.
What is the half-life when the initial concentration of \mathbf{A} is $2 \mathrm{~mol} \mathrm{dm}^{-3}$?

A	10 minutes
B	20 minutes
C	40 minutes
D	60 minutes

Your answer \square
7. Nitrogen dioxide, NO_{2} reacts with carbon monoxide, CO , as shown in the equation.

$$
\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g})
$$

A proposed mechanism for this reaction is shown below.

```
    \(\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{3}(\mathrm{~g})+\quad\) slow
\(\mathrm{NO}(\mathrm{g})\)
    \(\mathrm{NO}_{3}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})+\)
\(\mathrm{CO}_{2}(\mathrm{~g})\)
```

Which rate equation is consistent with this mechanism?

A	rate $=k\left[\mathrm{NO}_{2}\right]$
B	rate $=k\left[\mathrm{NO}_{2}\right][\mathrm{CO}]$
C	rate $=k\left[\mathrm{NO}_{2}\right]^{2}$
D	rate $=k\left[\mathrm{NO}_{2}\right]^{2}[\mathrm{CO}]$

Your answer \square
8. The reaction $2 A B \rightarrow 2 A+B_{2}$ is first order with respect to $A B$.

The half-life of the reaction is 2 minutes.
0.100 mol of $A B$ is dissolved in a solvent to form $100 \mathrm{~cm}^{3}$ of a reaction mixture.

What is the concentration of AB, in mol dm^{-3}, after 6 minutes?
A. 0.0125
B. 0.0250
C. 0.125
D. 0.250

Your answer
9. For the reaction $2 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{NO}(\mathrm{g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, the rate equation is rate $=k\left[\mathrm{H}_{2}\right][\mathrm{NO}]^{2}$.

What is the effect on the rate of reaction when the concentration of H_{2} is halved and the concentration of NO is doubled?
A. The reaction rate is halved.
B. The reaction rate is unchanged.
C. The reaction rate is doubled.
D. The reaction rate is quadrupled.
Your answer \square
10. Using the graph, what is the value of the pre-exponential factor, A, for the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$?

A. $3.45 \mathrm{~s}^{-1}$
B. $31.5 \mathrm{~s}^{-1}$
C. $1.04 \times 10^{5} \mathrm{~s}^{-1}$
D. $4.79 \times 10^{13} \mathrm{~s}^{-1}$

Your answer \square
11. Zinc reacts with copper(II) sulfate solution, $\mathrm{CuSO}_{4}(\mathrm{aq})$.

Which apparatus could be used to determine the effect of the concentration of $\mathrm{CuSO}_{4}(\mathrm{aq})$ on the rate of reaction?
A. balance
B. gas syringe
C. colorimeter
D. pH meter

Your answer \square

Mark scheme - How Fast (MCQ)

