How Fast (MCQ)

1. A graph is plotted of ln(k) against 1 /*T*. (k = rate constant, *T* = temperature in *K*)

The gradient has the numerical value of -55 000.

What is the activation energy, in kJ mol⁻¹?

A +1.5 × 10⁻⁷
B +2.22 × 10⁻⁶
C +6.62
D +457

Your answer

[1]

2. The equation for the reaction of IC/ and H₂ is shown below.

 $2ICI(g) + H_2(g) \rightarrow 2HCI(g) + I_2(g)$

The rate constant k for this reaction is $1.63 \times 10^{-6} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$.

What is the overall order of the reaction?

Α	0				
в	1				
С	2				
D	3				
Your answer					

[1]

3. A graph of ln k against $\frac{1}{7}$ (*T* in K) for a reaction has a gradient with the numerical value of -4420.

What is the activation energy, in kJ mol⁻¹, for this reaction?

- **A** −532
- **B** -36.7
- **C** +36.7
- **D** +5.32 × 10⁵

Your answer

4. A reaction is first order with respect to a reactant **X**.

Which rate-concentration graph for reactant X is the correct shape?

[1]

5. A reaction is zero order with respect to a reactant **A**.

Which concentration-time graph for reactant A is the correct shape?

[1]

6. The reaction below is first order with respect to A.

 $A(aq) \rightarrow products$

When the initial concentration of A is 1 mol dm⁻³, the half-life is 20 minutes.

What is the half-life when the initial concentration of A is 2 mol dm⁻³?

Α	10 minutes
В	20 minutes
С	40 minutes
D	60 minutes

Your answer	
-------------	--

[1]

7. Nitrogen dioxide, NO₂ reacts with carbon monoxide, CO, as shown in the equation.

 $NO_2(g) + CO(g) \rightarrow CO_2(g) + NO(g)$

A proposed mechanism for this reaction is shown below.

 $\begin{array}{ll} \mathsf{NO}_2(g) + \mathsf{NO}_2(g) \to \mathsf{NO}_3(g) + \\ \mathsf{NO}(g) \\ \mathsf{NO}_3(g) + \mathsf{CO}(g) \to \mathsf{NO}_2(g) + \\ \mathsf{CO}_2(g) \end{array} \hspace{1.5cm} \text{fast}$

Which rate equation is consistent with this mechanism?

A $rate = k[NO_2]$ **B** $rate = k[NO_2][CO]$ **C** $rate = k[NO_2]^2$

D rate = $k[NO_2]^2[CO]$

Your answer

[1]

0.100 mol of AB is dissolved in a solvent to form 100 cm³ of a reaction mixture.

What is the concentration of AB, in mol dm⁻³, after 6 minutes?

A. 0.0125 B. 0.0250 C. 0.125 D. 0.250 Your answer

[1]

9. For the reaction $2H_2(g) + 2NO(g) \rightarrow N_2(g) + 2H_2O(g)$, the rate equation is *rate* = $k[H_2][NO]^2$.

What is the effect on the rate of reaction when the concentration of H_2 is halved and the concentration of NO is doubled?

- A. The reaction rate is halved.
- B. The reaction rate is unchanged.
- C. The reaction rate is doubled.
- D. The reaction rate is quadrupled.

Your answer

[1]

10. Using the graph, what is the value of the pre-exponential factor, *A*, for the decomposition of N_2O_5 ?

11. Zinc reacts with copper(II) sulfate solution, CuSO₄(aq).

Which apparatus could be used to determine the effect of the concentration of $CuSO_4(aq)$ on the rate of reaction?

- A. balance
- B. gas syringe
- C. colorimeter
- D. pH meter

Your answer

[1]

END OF QUESTION PAPER

Mark scheme – How Fast (MCQ)

Question		Answer/Indicative content	Marks	Guidance
1		D	1 (AO 2.6)	
		Total	1	
2		c	1 (AO 1.2)	ALLOW 2 in the answer box
		Total	1	
3		С	1 (AO 2.6)	Examiner's Comments This was well answered, with many candidates understanding that the activation energy in $kJmol^{-1}$ is equal to (- gradient x R) divided by 1000, leading to C as the correct answer. Common errors included dividing the gradient by R, giving option A. or forgetting the minus sign and opting for B.
		Total	1	
4		A	1 (AO 1.1)	Examiner's Comments The vast majority of candidates knew graph A was correct.
		Total	1	
5		Α	1	
		Total	1	
6		В	1	
		Total	1	
7		С	1	
		Total	1	
8		C	1	
		Total	1	
9		C	1	
		Total	1	
10		D	1	
		Total	1	
11		 С	1	
		Total	1	